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ABSTRACT

Proper scoring rules, such as the probability score, are based (in part) upon the assumption that the
assessor’s utility function is linearly related to the score. The effects of two nonlinear utility functions, one
representing a ‘““risk-taker”” and one representing a “risk-avoider,” on an assessor’s probability forecasts are
considered. The results indicate that factors other than the expected score, e.g., the variance of the score, may
be relevant for probability assessment. In general, a “risk-taker” “hedges’ toward a categorical forecast,
while a “risk-avoider’” “hedges”” away from a categorical forecast. The implications of these results for the

process of probability assessment are briefly discussed.

1. Introduction

The probability score, or Brier score (Brier, 1950), is
considered by many meteorologists to be the “best”
available measure of the ‘‘goodness” of probability
forecasts (Murphy, 1969). Of particular interest in
this paper is the fact that the probability score is a
member of the class of “proper scoring rules” (Winkler
and Murphy, 1968). A proper scoring rule is a scoring
rule which forces the assessor (the meteorologist) to
make his statements (forecasts) correspond to his
subjective probabilities (judgments or beliefs) in order
to maximize or minimize his expected score (with some
scoring rules a higher score is “better,” while with other
scoring rules a lower score is “‘better”’). Since in the case
of the probability score a lower score is “better,” the
assessor should attempt to minimize his expected score
(the expectation being taken with respect to his sub-
jective probabilities).

In the development of proper scoring rules we (and
others) have assumed that the assessor attaches a
utility to each possible score and that this utility is
linearly related to the score. Alternatively, the assessor
could be given a monetary payoff which is linearly
related to the score, in which case the postulates of
decision theory (Savage, 1954; Fishburn, 1964) imply
that he should attempt to maximize his expected payoff.
The maximization of the expected payoff is equivalent
to the maximization (or minimization) of the expected
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score only if the assessor’s utility function for money is
linear within the relevant range (i.e., within the range of
potential payoffs). Thus, if the assessor’s utility function
for money is nonlinear, factors other than the expected
score may affect his probability forecasts.? In this paper
the effects of two nonlinear utility functions, one rep-
resenting a ‘“‘risk-taker” and one representing a “risk-
avoider,” on an assessor’s probability forecasts are
considered.” Section 2 contains a brief discussion of the
probability score. Sections 3 and 4 consider the pro-
bability forecasts of the “risk-taker” and the ‘risk-
avoider,” respectively. The implications of nonlinear
utility functions for probability assessment are con-
sidered in Section 5, and Section 6 contains a brief
summary and conclusion.

2. The probability score

Consider an individual (the assessor) who must make
a probability forecast for an event E which consists of
»n mutually exclusive and collectively exhaustive out-
comes, E;, E, ---) E,. Let r; denote the assessor’s
probability forecast for the outcome E;, and let p; denote
the assessor’s true judgment regarding the probability
that E; will occur. That is, p; is the assessor’s subjec-
tive probability that E; will occur and 7; is his forecast,
or stated probability, that E; will occur. Of course,
$:20and ;.20 fori=1,2, ---, n, and

2 pi=2 ri=1

=1 =l

4 Note that we are concerned with the assessor’s (and not the
decision maker’s) utility function.

5 For an introduction to the effect of nonlinear utility functions
on probability assessment when the scoring rule of concern is the
probability score, refer to Murphy (1970).
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Further, let d; equal one if E; occurs and zero otherwise.
The probability score for an individual forecast is then

PS=Y (ri—d)" @.1)

The “best” possible score is zero (when a forecast is
categorical and correct, i.e., when ;=1 and d;=1 for
some 1), and the “worst’” possible score is two (when a
forecast is categorical and incorrect, i.e., when ;=1 and

d;=0 for some 7).
If E, occurs, then PS can be written in the form

PSh= 1 —2r;.+z rﬂ.

1=1

(2.2)

The expected value of PS, or the expected probability
score, 1

E(PS) = }é puPSh

=£ ph(1~2m—l—Z fi2>
P}

=1

=1-23 pim+2 1
1

=1

=’1—'2 Xn: pﬁ’r*—i ?’52.

=1 =1

(2.3)

For a given set of subjective probabilities, p1, p2, = -+, pn,

E(PS) is minimized when 7;=p; for i=1, 2, -, n.

In other words, E(PS) is minimized when the assessor’s

probability forecast for each E; coincides with his true

judgments about the probability of occurrence of the E;.
The second moment of the probability score is

E(PS2) =Zn: Ph<1—21’}.+zﬂ: 1’,-2) ,

h=1 =1

which simplifies to

n k(3 2 n )
EPSH)=1+4 2 pm2+(2 fi2> —43 ripi

i=1 =1 i=1

+2 i 7'i2—4<£ Pﬂ’,)(é 7’1'2).
i=1 i=1 i=1

The variance of the probability score is

V(PS)=E(PS?)—[E(PS)], (2.4)
which simplifies to
V(PS) =4[é sz—<él Pi’i) ] (2.5)
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For a given set of subjective probabilities, p1, ps, - - -, P,
V(PS) is minimized when r;=1/n for i=1, 2, -+ -, n.
If the stated probabilities are all equal to 1/, the
variance of the probability score is zero, since the score
will be the same no matter which of the # outcomes
occurs.

Consider the two-state (»=2) situation. Then

E(PS?)=1=2p1r1—2psrs+rl+rs
=1=-2pr—2(1—p1)(1—ny)

+r24+(1—r)2, (2.6)
and
V(PS) =4[ prrd+ pors® — (prr1+pora)¥]
=4ﬁ1(1—p1)(1—27’1)2. (27)

Note that, for a given p;, V(PS) is minimized when
71=0.5 and maximized when ;=1 or 7, =0.

3. The probability forecasts of a risk-taker

Suppose that the assessor’s utility function for
positive changes in wealth is quadratic, i.e.,

U(x) =42, for x>0, (3.1)

where x represents an increase in the assessor’s wealth.
This function is convex, and an individual with a convex
utility function is a “‘risk-taker.”

Suppose, in addition, that the assessor must make a
probability forecast and that he will receive a payoff of
2—PS after the event in question is observed. This
payoff cannot be negative, since the largest possible
value of the probability score is two. Thus, the utility
of the payoff to the assessor is

U(Payoff) = U(2— PS) = (2~ PS)
=4—4PS+PS2. (3.2)

The assessor should choose 7y, 7s, <<+, 7, 50 as to
maximize his expected utility. For any set of the
probabilities 7y, 72, - - -, 7a, the expected utility is

EU(ry,- - yra)=2 palU(Payoff)
k=1

=3 ph(4—4PS+PSi2)

h=1
=4—4E(PS)+E(PS?).
Adding and subtracting [E(PS)]? yields
EU(?I, .

(3.3)

-, ra) =4—4E(PS)+E(PS?)
—[E@S)PHLEPS) !
=4—E(PS)[4—E(PS)]+V(PS). (3.4)
Thus, the expected utility depends not only on the

expected probability score, but also on the variance of
the probability score.
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In order to investigate the behavior of the optimal
probability forecasts, consider the simple two-state
situation. Optimal values of 7, were found for p;=0.50
(0.01) 1.00. Note that, since ro=1—7;, the determina-
tion of the optimal r; automatically gives the optimal
7. as well. Also, because of the symmetry of the two-
state situation, the optimal value of 7, for $; <0.50 can
be found by reversing the subscripts, so that p; will
then be greater than 0.50.

The relationship between p; and the optimal 7, is
illustrated in Fig. 1. For $;=0, $,=0.50 or p;=1,
r1=p1, while for all other values of p,, 717 p1. Note that
if $1<0.50, r1<py, and if p1>0.50, r.> p;. In fact, for
$1<0.33, r1=0, and for $,220.67, ry=1. This result can
be explained in terms of the expectation and variance
of the probability score, using (3.4). The second term
on the right-hand side of (3.4) is maximized when E(PS)
is minimized, since the derivative of this term with
respect to £(PS) is —4+42E(PS), which is less than or
equal to zero because E(PS)<2. Thus, the assessor can
maximize the second term in (3.4) by minimizing E(PS).
Since PS is a proper scoring rule, E(PS) is minimized
when r;=p;. However, consider the third term in (3.4),
which is simply V(PS). From (2.7), V(PS) is maximized
when 71=1 or r;=0. This situation creates a conflict for
the assessor; that is, in order to maximize the second
term in (3.4), he should let 7;=p;, while in order to
maximize the third term, he should let 7,=0 or r;=1.

0.80
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F16. 1. The optimal forecast »; as a function of the subjective
probability p; for the “risk-taker” in the two-state situation.

Maximizing the entire expression (3.4) requires a
combination of these two possibilities. When p; <0.50,
the optimal 7, is between zero and p;; when p;>0.50,
the optimal 7, is between p; and one. When »;<0.33
or 12>0.67, the effect of the third term in (3.4), the
variance of the probability score, is such that the second
term becomes irrelevant and the optimal forecast is
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F1c. 2. The expected probability score E(PS), the variance of the probability score V (PS), and the expected utility

EU of the forecast 7, for the “risk-taker’ in the two-state situation when $1=0.60
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F1c. 3. Same as Fig. 1 except for the “‘risk-avoider.”

categorical. All other things being equal, the assessor
prefers a large V(PS) to a small V(PS), which seems
reasonable since the assessor’s utility function is that
of a risk-taker.

As an example of the effect of E(PS) and V(PS) on
the optimal probability forecast, suppose that p;=0.60.
The three curves in Fig. 2 represent £ (PS), V(PS) and
EU as a function of r;. Note that E(PS) is minimized
when 7;=0.60 and V(PS) is maximized when r;=1.
The EU curve is maximized in this case when 7, =0.80
(the fact that the optimal value of 7, is exactly midway
between p; and one is simply a coincidence).

We should mention that, for some utility functions,
the optimal probability forecast would always be either
zero or one. For instance, consider the utility function
of an extreme risk-taker (for the probability assessment
task):

0, if 0<x<2
1, if x>2

b

U@={ (3.5)

For this utility function, the optimal forecast is r;=1
if $:>0.50 and »,=0 if »;<<0.50. This is obviously a
pathological case, but surely other (nonpathological)
utility functions exist which give the same results. In
the n-state case, the optimal forecast for the extreme
risk-taker is to set one 7; {the one corresponding to the
largest $.) equal to one and the remaining 7; equal to
zero.

4. The probability forecasts of a risk-avoider

Suppose that the assessor’s utility function for posi-
tive changes in wealth is exponential, i.e.,

U(x)=1—e=, for x>0, 4.1)

where % represents an increase in the assessor’s wealth.
This function is concave, and an individual with a
concave utility function is a “risk-avoider.”

JOURNAL OF APPLIED METEOROLOGY

VOLUME 9

As in the previous section, suppose, in addition, that
the assessor must make a probability forecast and that
he will receive a payoff of 2—PS after the event in
question is observed. The utility of the payoff to the
assessor 1is

U(Payoff)=U(2—PS)=1—e @ P8, (4.2)
The expected utility for any set of probabilities
71, Yoyt 0, ¥a 1S

EU(ry,- -+ yra) =2, pslU(Payoff)
=1

— Zn Phtl — e—(Z—PSh):I

h=1

=1—FE(eP52). (4.3)

In order to investigate the behavior of the optimal
probability forecasts, the simple two-state situation
was considered, as in the previous section. The relation-
ship between p; and the optimal 7, is illustrated in Fig. 3.
For p1=0, p1=0.5 or p1=1, r=4p1, while for all other
values of py, 717 p1. Note that if $;<0.50, p;<r,<0.5,
and if P1>050, 0.53?’13?1. i

Although in this case we cannot express EU as a
simple function of E(PS) and V(PS), we can reasonably
assume that a risk-avoider should prefer a small variance
to a large variance. This contention is supported to some
extent by Fig. 4, which refers to the situation in which
$1=0.60. The E(PS) and V (PS) curves are identical to
those in Fig. 2, but the EU curve is quite different
because of the different utility function. The risk-
avoider, instead of “hedging” toward the end points
of the unit interval, “hedges” toward the midpoint,
$1=0.50.

For some utility functions, the optimal probability
forecast in the two-state situation would always be 0.5.
For instance, consider the following utility function of
an extreme risk-avoider (for the probability assessment
task):

0, if 0<x<}

Ux)= (4.4)

Since the assessor can assure himself of a score of 0.5
and a payoff of 2—PS=1.5 by assessing r;=7,=0.5, he
has no reason to give a different assessment and risk a
lower payoff. As was the case with (3.5), (4.4) obviously
represents a pathological case, but surely other (non-
pathological) utility functions exist which give the
same results. In the n-state case, the optimal forecast
for the extreme risk-avoiderisr;=1/nfori=1,2, - - -, n.

5. Nonlinear utility and probability assessment

What are the implications of nonlinear utility func-
tions for the process of probability assessment (with re-
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gard to the utilization of scoring rules)? The answer to
this question depends, in part, upon the nature of the
assessor’s knowledge concerning his utility function.

If the assessor is able to specify his utility function,
then this function can, and should, be incorporated
into the assessment process. This is accomplished by
defining a new scoring rule, a composite function of the
original scoring rule and the (nonlinear) utility function,
which is proper under this utility function (Winkler,
1969). Then, the assessor maximizes (or minimizes)
his expected score and maximizes his expected utility
by setting 7; equal to p; for all z. Thus, in this situation,
the assessor should not utilize the original scoring rule
and “hedge,” but should determine the new (composite)
scoring rule and make his statements correspond to his
judgments.

11, on the other hand, the assessor is unable to specify
his utility function, then the function cannot, of course,
be incorporated into the assessment process. Therefore,
the assessor’s statements may differ from his judgments.
What can we say about the nature of these differences?
We described in Sections 3 and 4 the differences which
would result if the assessor’s utility function assumed
certain specific forms. The results indicate that for some
utility functions the differences would be large. How-
ever, for other, approximately linear, utility functions

the differences would, no doubt, be small.® From a
practical (meteorological) point of view, on the other
hand, very little is known about these differences.

The basic problem, then, is the determination of the
assessor’s utility function. One approach is to determine
the assessor’s utility function through the process of
interrogation, i.e., by asking the assessor about his
preferences. Another approach is to attempt to deter-
mine the assessor’s utility function through an analysis
of his past behavior in similar situations. We plan to
utilize this latter approach, i.e., the analysis of the
meteorologist’s forecasts to “estimate” his utility func-
tion, in a future study.

6. Summary and conclusion

In this paper we demonstrated that, for nonlinear
utility functions, factors other than the expected score
may be relevant in determining a probability forecast.
A case was presented in which the variance of the score
was shown to be an important factor, and other utility
functions could probably be found for which higher

®The judgments and the statements (forecasts) are assumed to
be the products of serious deliberations on the part of the assessor.
The assessor’s deliberations relate to both his beliefs (judgments)
and his preferences (utilities).
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order moments of the probability score would be of
interest.

Whenever a payoff (either explicit or implicit) is
associated with a scoring rule such as the probability
score, the utility function of the assessor may cause him
to “hedge” in some manner. Generally, a risk-taker will
“hedge” toward a categorical forecast, and a risk-
avoider will “hedge” away from a categorical forecast
(i.e., toward a forecast in which all the probabilities
are equal). This situation is a universal problem in
decision theory, for most formulations of decision-
making problems have assumed that the decision
maker’s utility function is linear with respect to money.
If the form of a nonlinear utility function is known, we
can, as indicated in Section 5, include this function in
the analysis. The main difficulty lies in the determina-
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tion of an individual’s utility function, and more work is
needed on this vital problem.
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